
Journal of Computational Physics 225 (2007) 1753–1781

www.elsevier.com/locate/jcp
Application of implicit–explicit high order
Runge–Kutta methods to discontinuous-Galerkin schemes

Alex Kanevsky a,*, Mark H. Carpenter b, David Gottlieb a, Jan S. Hesthaven a

a Division of Applied Mathematics, Brown University, Box F, Providence, RI 02912, USA
b Aeronautics and Aeroacoustic Methods Branch, NASA Langley Research Center, Hampton, VA 23681-0001, USA

Received 6 September 2006; received in revised form 9 February 2007; accepted 16 February 2007
Available online 13 March 2007
Abstract

Despite the popularity of high-order explicit Runge–Kutta (ERK) methods for integrating semi-discrete systems of
equations, ERK methods suffer from severe stability-based time step restrictions for very stiff problems. We implement
a discontinuous Galerkin finite element method (DGFEM) along with recently introduced high-order implicit–explicit
Runge–Kutta (IMEX-RK) schemes to overcome geometry-induced stiffness in fluid-flow problems. The IMEX algorithms
solve the non-stiff portions of the domain using explicit methods, and isolate and solve the more expensive stiff portions
using an L-stable, stiffly-accurate explicit, singly diagonally implicit Runge–Kutta method (ESDIRK). Furthermore, we
apply adaptive time-step controllers based on the embedded temporal error predictors. We demonstrate in a number of
numerical test problems that IMEX methods in conjunction with efficient preconditioning become more efficient than
explicit methods for systems exhibiting high levels of grid-induced stiffness.
� 2007 Elsevier Inc. All rights reserved.

Keywords: High-order; Discontinuous Galerkin finite element method (DGFEM); Implicit–explicit (IMEX) method; Navier–Stokes
equations
1. Introduction

In this paper, we are interested in alleviating the severe stability-based time-step restrictions that affect
explicit time integration schemes when applied to problems that exhibit high levels of geometry-induced stiff-
ness. Geometry-induced stiffness, or scale-separation stiffness, is a result of attempting to simultaneously sim-
ulate a system that has geometric features of drastically varying scales, and is defined in Section 3.2.

One example of this effect in the field of computational electromagnetics (CEM) occurs when attempting to
simulate EM scattering off of a jet fighter, whose very thin stealth coating is much smaller than the other air-
craft dimensions. Such a stealth coating can be discretized using proportionately few high-order elements.
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2007.02.021

* Corresponding author.
E-mail addresses: kanevsky@dam.brown.edu (A. Kanevsky), Mark.H.Carpenter@nasa.gov (M.H. Carpenter), dig@dam.brown.edu

(D. Gottlieb), Jan.Hesthaven@Brown.edu (J.S. Hesthaven).

mailto:kanevsky@dam.brown.edu
mailto:Mark.H.Carpenter@nasa.gov
mailto:dig@dam.brown.edu
mailto:Jan.Hesthaven@Brown.edu


1754 A. Kanevsky et al. / Journal of Computational Physics 225 (2007) 1753–1781
However, introducing these relatively small elements will result in a very high stiffness (on the order of 103)
and a very small time step, since the stable time step for the scheme will be determined by the smallest-sized
element. As a result, current algorithms in CEM can only handle purely harmonic (up to 10 GHz plane wave)
scattering by fighter aircraft, which are assumed to be pure metallic shells, and cannot handle the inclusion of
coatings, penetration into and radiation out of the aircraft.

Another important example can be found in computational fluid dynamics (CFD), where the elements used
to discretize the boundary layer near an airfoil can often result in a geometry-induced stiffness on the order of
103–104 or greater depending on the Reynolds number, and will thus severely restrict the maximum stable time
step. Mesh generation may also result in high stiffness if a small percentage of ‘‘poor’’ elements are consider-
ably more skewed than the average element.

The basic form of time-dependent algorithms has not changed in the last 30–40 years. Explicit methods are
the most efficient methods for long-time simulations of non-stiff systems, while implicit methods are more effi-
cient for solving stiff systems. One approach that has been used to increase the efficiency of explicit methods
for stiff equations is based on explicit local timestepping schemes (often called multi-rate integration) , where
equations on individual cells or elements are integrated using different local time-steps. Osher and Sanders
introduced a local time stepping method for one-dimensional conservation laws in [33]. Other examples of
such schemes include [5,15,12,40,35].

A disadvantage with multi-rate methods is that they are generally implemented at 2nd-order (or lower) tem-
poral accuracy. Methods higher than 2nd-order exist, but suffer increasing implementation complexity. Even
2nd-order multi-rate methods suffer difficulties contending with irregular unstructured engineering meshes for
which elements can range in size by many orders of magnitude.

Implicit–explicit or IMEX algorithms were originally developed to solve the stiff term or operator of con-
vection–diffusion–reaction (CDR) type equations implicitly and the nonstiff term explicitly [4]. A number of
IMEX Runge–Kutta methods have been developed in recent times, such as [3,8,13,16,43,44], which combine
ERK schemes with diagonally implicit Runge–Kutta (DIRK) schemes. However, these schemes have various
drawbacks, such as lower-order coupling errors, coupling stability problems, no error control, and poor ERK
or DIRK stability properties.

The recently-developed additive Runge–Kutta (ARK) methods in [27] can be used for the classical opera-
tor-based IMEX time-splitting or a geometric region-based IMEX time-splitting. They allow for integration of
stiff terms by an L-stable, stiffly-accurate explicit, singly diagonally implicit Runge–Kutta method (ESDIRK),
and integration of nonstiff terms by an explicit Runge–Kutta method (ERK). Furthermore, they provide
extrapolation-based stage-value predictors as well as embedded schemes (one order lower) which allow for
the use of automatic error-based time-step controllers, such as integral (I), proportional-integral (PI) and
proportional-integral-derivative (PID) controllers, which are defined in Section 3.3.8. We implement the
high-order implicit–explicit Runge–Kutta (IMEX-RK) methods of Kennedy and Carpenter [27] to overcome
geometry-induced stiffness. IMEX algorithms solve the non-stiff portions of the domain using explicit
methods, and isolate and solve the more expensive stiff portions (e.g. stealth coating or boundary layer) using
implicit methods.

We follow the method of lines approach, and discretize space using a nodal discontinuous Galerkin spectral
element method based on [22,23]. The discontinuous Galerkin method is a class of finite element methods
using a completely discontinuous piecewise polynomial space for the numerical solution and the test functions.
The first discontinuous Galerkin method was introduced in 1973 by Reed and Hill [37], in the framework of
neutron transport (steady state linear hyperbolic equations).

Since then, the discontinuous Galerkin method has been applied in a number of fields, such as aeroacous-
tics, electro-magnetism, gas dynamics, granular flows, magneto-hydrodynamics, meteorology, modeling of
shallow water, oceanography, oil recovery simulation, semiconductor device simulation,turbulent flows, vis-
coelastic flows and weather forecasting. For a detailed description of the method as well as its implementation
and applications, we refer readers to the lecture notes [10] and the papers in Springer volume [11]. The discon-
tinuous Galerkin finite element (DGFEM) method builds upon the strengths of the classical spectral element
method introduced by Patera [34], and has a number of advantages over classical finite difference and finite
volume methods. DGFEM methods are especially well suited for IMEX algorithms, since they allow for
clean and easy decoupling of the stiff from the nonstiff regions of the domain. Furthermore, they are highly



A. Kanevsky et al. / Journal of Computational Physics 225 (2007) 1753–1781 1755
parallelizable and accurate, provide for simple treatment of boundary conditions, handle complicated geom-
etries well, and can easily handle adaptivity.

This paper is organized as follows. In Section 2, we discuss the details of the spatial discretization scheme,
which is based on a nodal discontinuous Galerkin finite element method (DGFEM). We review the proper-
ties and characteristics of implicit–explicit Runge–Kutta (IMEX-RK) time-integration methods in Section 3.
Numerical results comparing IMEX-RK and ERK schemes for various test problems are presented in
Section 4. Finally, we discuss all the results and give concluding remarks in Section 5.

2. Spatial discretization

2.1. Two-dimensional scheme

The nodal discontinuous Galerkin (DG) finite element spatial discretization is based on [22–24]. We now
review the details for a two-dimensional spatial discretization, although a generalization to the three-dimen-
sional case is fairly straightforward. Assume that we have a multi-dimensional wellposed conservation law
ouðx; tÞ
ot

þr � Fðuðx; tÞÞ ¼ 0; x 2 X; t P 0 ð2:1Þ
with initial and boundary conditions
uðx; 0Þ ¼ f ðxÞ; x 2 X

uðx; tÞ ¼ gðxÞ; x 2 dX; t P 0;
where u is the state vector of unknown/s, and F(u) is the flux. We assume that our computational domain X is
composed of K non-overlapping d-simplices or elements
X ¼
[K
k¼1

Dk:
In two dimensions, we will assume that the elements are 2-simplexes or triangles to allow for fully unstructured
meshes. We also assume that the triangles have straight sides, which results in a constant transformation Jaco-
bian for all elements, and greatly simplifies the scheme. The reference or standard triangle I � R2 has the three
vertices
vI ¼
�1

�1

� �
; vII ¼

1

�1

� �
; vIII ¼

�1

1

� �
;

while the physical simplex or subdomain Dk has the three corresponding vertices vk
1, vk

2, and vk
3 as can be seen in

Fig. 1. Also, element Dk has physical coordinates x ¼ ðx; yÞ, while the reference element I has coordinates
n ¼ ðn; gÞ. Dk and I are related through the linear, invertible map W
W : I! D) W�1 : D! I:
We construct the linear map W given as
x ¼ Wðn; gÞ ¼ � nþ g
2

� �
vk

1 þ
1þ n

2

� �
vk

2 þ
1þ g

2

� �
vk

3:
We assume that the solution in each subdomain Dk is well approximated by the local polynomial of degree p
ukðx; tÞ ¼
XN

i¼0

ukðxk
i ; tÞLk

i ðxÞ ¼
XN

i¼0

uk
i ðtÞLk

i ðxÞ;
where xk
i are the N + 1 grid points in the kth element and Lk

i ðxÞ is the two-dimensional multivariate Lagrange
polynomial based on these points
LiðxÞ 2 P 2
p ¼ spanfxiyj; i; j P 0; iþ j 6 pg:



I

Dk

(−1, −1) (1, −1) 

(−1, 1) 

vk
1

vk
2

vk
3

Ψ

Fig. 1. Linear mapping W from reference element I to element Dk in 2D.

1756 A. Kanevsky et al. / Journal of Computational Physics 225 (2007) 1753–1781
Note that
N ¼ ðp þ 1Þðp þ 2Þ
2

� 1;
and N + 1 is the total number of grid points necessary in 2D for polynomials of degree p. The physical flux F is
approximated as
FkðukÞ ¼
XN

i¼0

Fkðukðxi; tÞÞLk
i ðxÞ:
We express the local polynomials in a more general framework
ukðx; tÞ ¼
XN

i¼0

uk
i ðtÞLk

i ðxÞ ¼
XN

n¼0

ûk
nðtÞ/nðxÞ; ð2:2Þ
where /nðxÞ are the basis functions defined on the kth element, while ûk
nðtÞ are the modal coefficients. A poly-

nomial basis such as the multivariate monomials /ijðxÞ ¼ xiyj will result in a nearly dependent basis, and
therefore a poorly conditioned Vandermonde matrix (grows exponentially with p). We choose an orthonormal
basis that has been rediscovered on several occasions by Dubiner [14], Proriol [36] and Koornwinder [30]
~/ijðn; gÞ ¼ P ð0;0Þi
2ðnþ 1Þ
ð1� gÞ � 1

� �
1� g

2

� �i

P ð2iþ1;0Þ
j ðgÞ;

/ijðn; gÞ ¼
~/ijðn; gÞffiffiffiffifficij
p ; cij ¼

2

2iþ 1

� �
1

iþ jþ 1

� �
;

where P ða;bÞn is the Jacobi polynomial of order n, which are orthogonal on I, and cij is the orthonormalizing
weight.

We choose the grid points xk
j ; j ¼ 0; 1; . . . ;N ; computed as the steady state, minimum energy solution to an

electrostatics problem on an equilateral triangle by Hesthaven in [21]. The distribution is illustrated in Fig. 2
for polynomial degrees p ranging from 2 to 12 on the reference element I. Note that this grid distribution
becomes the Legendre–Gauss–Lobatto distribution along the edges of the triangle.

We define the vectors of nodal and modal values on Dk as
uk
N ¼ ½uk

0; . . . ; uk
N �

T
; ûk

N ¼ ½ûk
0; . . . ; ûk

N �
T
;



p = 2 p = 4 p = 6 

p = 8 p = 10 p = 12 

Fig. 2. Electrostatic node distribution [21] on I.

A. Kanevsky et al. / Journal of Computational Physics 225 (2007) 1753–1781 1757
and the vectors of local Lagrange polynomials and basis functions on Dk as
Lk
N ¼ ½Lk

0; . . . ; Lk
N �

T
; /k

N ¼ ½/
k
0; . . . ;/k

N �
T
:

Let us simplify our notation for /ij by defining a new index a 2 ½0;N � that represents a reordering of ði; jÞ and
rewrite /a ¼ /ij. The Vandermonde matrix is defined to be
Via ¼ /aðxiÞ:

This implies that
uk
N ¼ Vûk

N ; ûk
N ¼ V�1uk

N ; VT Lk
N ¼ /k

N :
We implement a Galerkin projection methodology and integrate
ouk
N

ot
þr � Fk

N ¼ 0
against a sequence of N + 1 test functions LiðxÞ. After integrating by parts twice, we get the final form of the
scheme
Z

Dk

ouk
N

ot
þr � Fk

N

� �
Lk

i ðxÞ dx ¼
I

dDk
Lk

i ðxÞn̂ � ½Fk
N � F�N � dx: ð2:3Þ
The numerical flux is the local Lax–Friedrichs flux [31,32]
F�N ¼ F�Nðu�; uþÞ ¼
FN ðuþÞ þ FNðu�Þ

2
� jkj

2
ðuþ � u�Þ;
where u� refers to the local solution, u+ refers to the neighboring solution/s, and k is the maximum local eigen-
value of the flux Jacobian.

The mass and stiffness matrices on I are
Mij ¼ ðLiðnÞ; LjðnÞÞI ¼
Z

I

LiðnÞLjðnÞ dn;

Sij ¼ ðSn
ij;S

g
ijÞI ¼ ðLiðnÞ;rLjðnÞÞI ¼

Z
I

LiðnÞrLjðnÞ dn;



1758 A. Kanevsky et al. / Journal of Computational Physics 225 (2007) 1753–1781
and are computed in two dimensions as
M ¼ ðV�1ÞT ðV�1Þ;

Sn ¼ ðV�1ÞT WnðV�1Þ; Wn
ij ¼

Z
I

/iðnÞ
o/jðnÞ

on
dn;

Sg ¼ ðV�1ÞT WgðV�1Þ; Wg
ij ¼

Z
I

/iðnÞ
o/jðnÞ

og
dn:
It is important to mention that for higher order equations (having spatial derivatives of order greater than 1),
such as the Navier–Stokes equations, we follow the approach of Bassi and Rebay [6] by introducing an addi-
tional variable (for formulation only) so that we may rewrite the higher order equation
ou

ot
þr � F ¼ r � ðmruÞ ð2:4Þ
as a system of first order equations
ou

ot
þr � ðF� pÞ ¼ 0;

mru ¼ p:

ð2:5Þ
We then use the same approach and seek an approximation as
Z
Dk

ouN

ot
þr � ðFN � pN Þ

� �
LiðxÞ dx ¼

I
dDk

LiðxÞn̂ � FN � F�N � ðpN � p�N Þ
� �

dx;Z
Dk
ðpN � mruN ÞLiðxÞ dx ¼

I
dDk

LiðxÞn̂ � ½uN � u�N � dx:

ð2:6Þ
A central flux is used for u�N and the local Lax–Friedrichs flux is used for F�N and p�N .
To stabilize the scheme, we apply a modal filter to the numerical approximation at regular intervals
FN uN ðx; tÞ ¼
XN

n¼0

r
n
N

	 

ûnðtÞ/nðxÞ;
where rðgÞ is the filter kernel. Two commonly used filters, which are implemented in Section 4, are the expo-
nential and the sharp-cutoff filters [17,25].

3. Time integration schemes

3.1. Explicit Runge–Kutta (ERK) methods

We have a semi-discrete scheme, which we will integrate in time using a high-order Runge–Kutta method.
Let us write the system of ordinary differential equations (ODEs) as the initial value problem (IVP)
dU

dt
¼ Fðt;UðtÞÞ; Uðt0Þ ¼ U0; ð3:1Þ
where U is a vector of length m, and m is the number of ODEs resulting from the spatial discretization of the
given PDE. To compute U(t + Dt) = U(n+1) with an s-stage RK method
UðiÞ ¼ UðnÞ þ Dt
Xs

j¼1

aijFðtðnÞ þ cjDt;UðjÞÞ; 1 6 i 6 s;

Uðnþ1Þ ¼ UðnÞ þ Dt
Xs

i¼1

biFðtðnÞ þ ciDt;UðiÞÞ;
ð3:2Þ



A. Kanevsky et al. / Journal of Computational Physics 225 (2007) 1753–1781 1759
where U(n) = U(t(n)), U(i) = U(t(n) + ciDt), and the fixed scalar coefficients ai,j, bj and ci determine all of the
accuracy, stability and efficiency properties of the given RK scheme. The nodes ci are the RK intermediate
time levels, the coefficients of the RK-matrix A, ai,j, are the weights for the ith RK stage, and bi are the weights
of the final stage.

Following Butcher [7], we write the RK scheme in a tabular format known as the Butcher tableau

Fully-explicit Runge–Kutta schemes, commonly referred to as ERK schemes, have zeros on the main diag-
onal and above the main diagonal of A, e.g. aij ¼ 0, j P i.

We implement an efficient and accurate 5-stage, 4th-order low-storage ERK scheme [9] in order to minimize
memory storage. Carpenter and Kennedy [9] derive a 2N-storage scheme which is competitive with the classical
4th-order high-storage method, where N is the dimension of the ODE system. Given the coefficients Aj, Bj, and
cj [9], the algorithm to compute U(t + Dt) requires the storage and overwriting of only 2 vectors Uj and dUj
dUj ¼ AjdUj�1 þ DtFðUjÞ; j ¼ 1; . . . ; s;

Uðt þ DtÞ ¼ Uj ¼ Uj�1 þ BjdUj:
Williamson [42] demonstrated (the connection between the 2N-storage scheme and the general RK scheme)
that
Bj ¼ ajþ1;j; j 6¼ s;

Bs ¼ bs;

Aj ¼ ðbj�1 � Bj�1Þ=bj; j 6¼ 1; bj 6¼ 0;

Aj ¼ ðajþ1;j�1 � cjÞ=Bj; j 6¼ 1; bj ¼ 0:
Although fully-explicit time-integration schemes are simple to implement and the most efficient methods for
low levels of stiffness, they are at the mercy of the stability-based time-step restriction (CFL condition), espe-
cially for problems that have high levels of geometry-induced or physics/operator-induced stiffness. For this
reason, we implement implicit–explicit RK methods, which we discuss in Section 3.3.

3.2. Geometry-induced stiffness

We now define two measures of geometry-induced stiffness, S, which will be referred to as ‘‘stiffness’’
throughout this paper, unless specified otherwise. For the one-dimensional case, the definition of geometry-
induced stiffness is straightforward, since the system eigenvalues will scale just as the ratio of element lengths.
We define the grid-induced stiffness as the ratio of the minimum element length in the explicit set, X½ex�, to that
of the minimum element length in the implicit set, X½im� (i.e. ratio of minimum element length of all elements
integrated with ARK-ERK to that of minimum element length of all elements integrated with ARK-ESDIRK)
S1D ¼
minDk2X½ex�

ðlÞ
minDk2X½im� ðlÞ

;

where l represents the element length. The two-dimensional grid-induced stiffness is defined to be the ratio of
the minimum element (triangle) chord length in the explicit set, X½ex�, to that of the minimum element (triangle)
chord length in the implicit set, X½im� (i.e. ratio of minimum element chord length of all elements integrated
with ARK-ERK to that of minimum element chord length of all elements integrated with ARK-ESDIRK)
S2D ¼
minDk2X½ex�

ðcÞ
minDk2X½im� ðcÞ

;



1760 A. Kanevsky et al. / Journal of Computational Physics 225 (2007) 1753–1781
where c represents the element chord length. The two-dimensional stiffness may also be based on other mea-
sures, such as the triangles’ inscribed radius.

3.3. Implicit–explicit Runge–Kutta (IMEX-RK) methods

In order to alleviate geometry-induced stiffness, we implement the recently introduced additive Runge–
Kutta schemes by Kennedy and Carpenter [27], which are a class of implicit–explicit Runge–Kutta or
IMEX-RK methods. IMEX algorithms solve the nonstiff terms using explicit methods, and isolate and solve
the more expensive stiff terms using implicit methods. The N-Additive Runge–Kutta (ARK-N) schemes [9] are
used to integrate equations of the form
dU

dt
¼ Fðt;UðtÞÞ ¼

XN

m¼1

F½m�ðt;UðtÞÞ; Uðt0Þ ¼ U0; ð3:3Þ
and are given by the s-stage RK scheme
UðiÞ ¼ UðnÞ þ Dt
XN

m¼1

Xs

j¼1

a½m�ij F½m�ðtðnÞ þ cjDt;UðjÞÞ; 1 6 i 6 s;

Uðnþ1Þ ¼ UðnÞ þ Dt
XN

m¼1

Xs

i¼1

b½m�i F½m�ðtðnÞ þ ciDt;UðiÞÞ;
ð3:4Þ
where UðnÞ ¼ UðtðnÞÞ, Uðnþ1Þ ¼ Uðtðnþ1ÞÞ, and UðiÞ ¼ UðtðnÞ þ ciDtÞ. We shall order U in the following way:
U ¼
U½ex�

U½im�

� �
;

where U½ex� corresponds to the m½ex� ordinary differential equations resulting from the spatial discretization of
the partial differential equation on the explicit set of elements, X½ex�, and U½im� corresponds to the m½im� ordinary
differential equations resulting from the spatial discretization of the partial differential equation on the explicit

set of elements, X½im�. Note that m ¼ m½ex� þ m½im�. We define F ¼ F½ex� þ F½im� ¼ F½1� þ F½2�, where
F½1�
U½ex�

U½im�

� �
¼

FðU½ex�Þ
0

� �
; F½2�

U½ex�

U½im�

� �
¼

0

FðU½im�Þ

� �
;

and the coefficient matrices A½m� and vectors b½m� are
A½1� ¼ A½ERK�; A½2� ¼ A½ESDIRK�

b½1� ¼ b½2� ¼ b;
where A½ERK�, A½ESDIRK�, and b are given in Appendix A. We now write the scheme as
U
ðiÞ
½ex� ¼ U

ðnÞ
½ex� þ Dt

Xs

j¼1

a½1�ij FðtðnÞ þ cjDt;UðjÞ½ex�Þ; 1 6 i 6 s;

U
ðiÞ
½im� ¼ U

ðnÞ
½im� þ Dt

Xs

j¼1

a½2�ij FðtðnÞ þ cjDt;UðjÞ½im�Þ; 1 6 i 6 s;

Uðnþ1Þ ¼ UðnÞ þ Dt
Xs

i¼1

biFðtðnÞ þ ciDt;UðiÞÞ;

ð3:5Þ
since b½1�i ¼ b½2�i . This set of RK schemes allows for great flexibility in the sense that the implicit–explicit par-
tition can be based on the operator or on the grid point/geometric region. In this paper, we reduce the N-Addi-
tive RK scheme to a 2-Additive scheme, which is given by an explicit–implicit partition. In other words, we
choose to perform the time-splitting by geometric region.



A. Kanevsky et al. / Journal of Computational Physics 225 (2007) 1753–1781 1761
The ARK schemes can be expressed in the following Butcher tableau format, which is similar to the basic
tableau, but has one extra set of coefficients ~bi. The coefficients ~bi provide a scheme of one order lower than the
main scheme based on the coefficient weights bi. Such schemes are referred to as embedded schemes.

Note that the two fourth-order schemes in Table A.1 are coupled through the nodes ci, e.g.
c½ERK�

i ¼ c½ESDIRK�
i so that the corresponding RK times tðnÞ þ ciDt will be the same for both schemes at each

RK stage, and also through the weights bi, e.g. b½ERK�
i ¼ b½ESDIRK�

i . Also, the embedded scheme will be used
to compute the temporal error after every time step, which will be fed into a time-step controller to adaptively
control the time-step (refer to Section 3.3.8).

The coupling between the explicit and implicit regions is straightforward. At each RK stage, the explicit
grid points are integrated to find U

ðiÞ
½ex�, and then the implicit grid points are integrated to find U

ðiÞ
½im�, using

the explicit regions as boundary conditions.

3.3.1. Newton–Krylov methods: Newton methods (outer iteration)

Let us assume for generality that we are solving a nonlinear conservation law, such as the Navier–Stokes
equations. To integrate the semi-discrete system forward in time with an implicit Runge–Kutta scheme, we
must solve a nonlinear system of equations at the ith RK stage if the ith row of A has at least one entry aij

that is nonzero for j P i.
For example, for the second stage of the ARK4(3)-ESDIRK (i = 2) scheme, we need to solve for Uð2Þ,

where
Uð2Þ ¼ UðnÞ þ Dt
X6

j¼1

a2;jGðUðjÞÞ ¼ UðnÞ þ Dt
4

GðUð1ÞÞ þGðUð2ÞÞ
� �

: ð3:6Þ
We choose to solve for Uð2Þ using a modified Newton–Krylov method [26]. Let us assume that U ¼ Uð2Þ and
rewrite the system as
FðUÞ ¼ U�UðnÞ � Dt
1

4
GðUð1ÞÞ þ 1

4
GðUÞ

� �
¼ U� Dt

4
GðUÞ

� �
þHðUðnÞ;Uð1ÞÞ ¼ 0; ð3:7Þ
where HðUðnÞ;Uð1ÞÞ ¼ �UðnÞ � Dt
4
GðUð1ÞÞ. A multivariate Taylor expansion about the current iterate of the

solution Uk gives us
FðUkþ1Þ ¼ FðUkÞ þ F0ðUkÞðUkþ1 �UkÞ
þ F00ðUkÞðUkþ1 �UkÞ2 þ � � �
Neglecting the higher order terms OðUkþ1 �UkÞ2, we arrive at Newton’s method
Ukþ1 ¼ Uk þ dUk; k ¼ 0; 1; . . . ;

JðUkÞdUk ¼ �FðUkÞ;
ð3:8Þ
where J ¼ F0 is the Jacobian matrix.

3.3.2. MFNK method

The above method is a strict Newton method and requires the formation and storage of the Jacobian
matrix for each nonlinear solve (each implicit RK stage). This can be a very expensive and perhaps unfeasible
task for large-scale problems. For these reasons, we implement a modified Jacobian-free Newton–Krylov
method (JFNK) [28], which is referred to as the MFNK method by Knoll and McHugh in [29]. The MFNK



1762 A. Kanevsky et al. / Journal of Computational Physics 225 (2007) 1753–1781
method is not exactly JFNK, due to the fact that some Jacobians are computed and stored, and differs from
the modified Newton–Krylov method (MNK) in that MNK holds both the preconditioner and the action of
the Jacobian (Eq. (3.11)) constant over a number of Newton iterations, while MFNK only holds the Jacobian-
based Preconditioner constant. For this reason, MFNK has stronger nonlinear convergence properties than
MNK. We also note that the very expensive formation and storage of the Jacobian is performed infrequently.

3.3.3. Krylov methods: inner iteration

Each Newton iteration involves solving a sequence of linear systems
JdU ¼ �FðUÞ ð3:9Þ

for du. Due to the nature of the DGFEM spatial discretization discussed in Section 2, the Jacobians are sparse
and therefore lead to extremely sparse linear systems, since elements communicate only with ‘‘adjacent’’ neigh-
boring elements that share a common point in one-dimension, edge in two-dimensions, and face in three-
dimensions. The Jacobian matrix J for the ARK schemes may be found by differentiating with respect to U
J ¼ dFðUÞ
dU

¼ I� aiiDt
dGðUÞ

dU
; 2 6 i 6 s; ð3:10Þ
where the Jacobian dG
dU

may be computed analytically (note: this is not true for all equations) and the factor aii

for the ARK-ESDIRK schemes is constant for all RK stages ði > 1Þ since the schemes are SDIRK for i > 1,
or singly diagonally implicit Runge–Kutta.

Iterative methods are particularly well-suited for solving extremely-sparse, unsymmetric linear systems [38].
(Iterative methods are indirect, as opposed to direct methods such as Gaussian elimination, and require a cer-
tain criteria to end the iterations.) For these reasons, we solve these sparse linear systems using two popular
Krylov subspace methods [38]: the generalized minimum residual method, commonly referred to as GMRES,
and the Bi-Conjugate Gradient STABilized method also known as BiCGSTAB.

The success of an iterative linear solver largely depends on an effective preconditioner [38], which efficiently
clusters the eigenvalues of the iteration matrix, and results in a speed-up of the Krylov method. We apply right
preconditioning, which leaves the right-hand side of (3.9) unchanged
ðJP�1ÞðPdUÞ ¼ �FðUÞ; ð3:11Þ

where P represents the preconditioning matrix. Solving the preconditioned system above involves two main
steps.

(a) Firstly, we define z ¼ PdU and solve
JP�1z ¼ �FðUÞ
for z using a Krylov solver and the Frechet derivative

JP�1r0 � ½Fðuþ �P�1r0Þ � FðuÞ�=�; �� 1:
(b) Secondly, we solve for dU using a linear solver
PdU ¼ z) dU ¼ P�1z:
The Newton–Krylov algorithm only requires the action of P�1 on vector v (matrix–vector product P�1v).
Thus, only the matrix elements required for the action of P�1 are formed. This may be done at every single
Newton iteration or periodically when required (MFNK, MNK). We form the Jacobian once every k time
steps (k = 20,50,100, . . .) and reuse the ‘‘frozen’’ Jacobian as the preconditioner for the next k steps. However,
even though we reuse the old Jacobian for preconditioning, we compute the current action of the Jacobian
(current matrix–vector multiply JP�1r0) using forward differencing.

It is also important to mention that GMRES involves only one matrix–vector multiply per Krylov iteration
versus BiCGSTAB’s two, which becomes an increasingly important consideration for increasingly stiff systems
when using preconditioned Newton–Krylov algorithms.



A. Kanevsky et al. / Journal of Computational Physics 225 (2007) 1753–1781 1763
Note that all of the Newton–Krylov algorithms applied in the numerical tests in Section 4 are based on C.T.
Kelley’s nsoli algorithm, which is a Newton–Krylov solver using inexact Newton-Armijo iteration, an Eisen-
stat–Walker forcing term and parabolic line search via 3-point interpolation [26]. The code is available from
SIAM at the URL: http://www.siam.org/books/fa01/.

3.3.4. Newton–Krylov termination criteria

Iterative methods will continue iterating until a prescribed stopping or termination criteria is met. We use
the following termination conditions for the Newton (outer) and Krylov (inner) iterations.

The outer Newton iteration will stop when
kFðUkþ1Þk2 < atolþ rtolkFðU0Þk2;
where atol and rtol are the user-specified absolute and relative tolerances respectively. Typically,
atol ¼ rtol ¼ 1e� 03 for numerical tests in Section 4.

The inner Krylov iteration will stop when the relative linear residual
krkþ1k2 < gmaxkFðUkþ1Þk2;
where gmax ¼ :9.

3.3.5. Preconditioning

We conduct several numerical tests comparing the performance of the preconditioners discussed in this sec-
tion. We perform the tests on the nozzle flow with shock test case from Section 4 for polynomials of degree
p = 4 ðDtmean ¼ 1=50Þ and p = 8 ðDtmean ¼ 1=142Þ. The tests are run until final time T = 1, which is much ear-
lier than the time for which the shock begins to develop (roughly T = 20). The reason for this is because the
times steps in this region are still fairly large with respect to the ERK case, and the results for this case are
therefore more meaningful and important as far as IMEX-RK schemes are concerned. Please refer to Section
4 for all other parameters and details on the nozzle flow problem.

The results for the Jacobi, block (subdomain) Jacobi, ILU(0) and ILUT(s) preconditioners are summarized
in Tables 1 and 2, and are plotted in Fig. 3. The tests were conducted on three different grids having geometry-
induced stiffnesses of 12.6, 96.4 and 928.6, in order to study how the various preconditioners respond to geom-
etry-induced stiffness. The preconditioners were formed and stored once every physical unit of time (once
every t = 1 or once every 50 time steps for p = 4, and once every 142 time steps for p = 8). We used the
GMRES Krylov scheme with no restarts as part of the MFNK method, and used Newton tolerances
atol = rtol = 1e�03 to stop the iterations. We tested the ILUT(s) preconditioner for three values of s, namely
for s = 1e�02,

ffiffiffiffiffi
10
p

e�03 and 1e�03.
First, let us clarify that the term ‘‘fail’’ in Tables 1 and 2 signifies that the iterative linear solver converged

too slowly or did not converge at all. We can see from Table 1 that for polynomials of degree p = 4, the Jacobi,
ILU(1e�02) and the ILU(0) preconditioners are not robust and result in repeated failures, especially as the
stiffness increases. The ILU(0) factorization resulted in extremely ill-conditioned linear systems in all cases,
and was the least robust method.

However, the ILU(
ffiffiffiffiffi
10
p

e�03), ILU(1e�03) and the block Jacobi preconditioners were consistently robust,
even for high levels of stiffness, and are plotted in Fig. 3(a) for this reason. As expected, the ILU(

ffiffiffiffiffi
10
p

e�03)
forms the factors faster than the ILU(1e�03). It is evident from Fig. 3 that preconditioning helps increase the
efficiency of the MFNK and therefore the IMEX-RK scheme. The preconditioners help alleviate the CPU
time versus stiffness slope. The ILU(1e�03) resulted in the flattest curve (smallest CPU time versus stiffness
slope), but was slower than the block Jacobi preconditioner for all three test cases. The ILU(1e�03) may
become more efficient than the block Jacobi for extremely high levels of stiffness (i.e. >1e+03). In terms of
speed, storage, formation time, practicality (if we want to form the preconditioner at more frequent intervals)
and implementation, the block Jacobi is the clear winner of this group, especially for the levels of stiffness that
were tested.

Similarly, Table 2 for polynomials of degree p = 8 shows that the Jacobi, ILU(1e�02), ILUð
ffiffiffiffiffi
10
p

e� 03Þ
and the ILU(0) fail repeatedly for increasing stiffness. We plot the ILU(1e�03) and the block Jacobi
results in Fig. 3(b). Again, the block Jacobi preconditioner is more efficient than the ILU(1e�03). It is

http://www.siam.org/books/fa01/


Table 1
2D preconditioner tests, p = 4, T = 1

Preconditioner Stiffness ðSÞ Avg. GMRES iter. per Dt CPU time

None 12.6 99 1.67e+02
Jacobi 946 1.19e+03
Block Jacobi 56 1.30e+02
ILU(1e�03) 7 2.06e+02
ILU(

ffiffiffiffiffi
10
p

e�03) 10 2.60e+02
ILU(1e�02) 24 2.99e+02
ILU(0) Fail

None 96.4 850 1.58e+03
Jacobi Fail
Block Jacobi 158 3.35e+02
ILU(1e�03) 12 6.31e+02
ILU(

ffiffiffiffiffi
10
p

e�03) 41 1.35e+03
ILU(1e�02) Fail
ILU(0) Fail

None 928.6 1054 2.19e+04
Jacobi Fail
Block Jacobi 454 8.00e+02
ILU(1e�03) 25 8.50e+02
ILU(

ffiffiffiffiffi
10
p

e�03) 196 3.85e+03
ILU(1e�02) Fail
ILU(0) Fail

Table 2
2D preconditioner tests, p = 8, T = 1

Preconditioner Stiffness ðSÞ Avg. GMRES iter. per Dt CPU time

None 12.6 121 7.25e+02
Jacobi 410 2.41e+03
Block Jacobi 43 2.01e+03
ILU(1e�03) 7 3.81e+03
ILU(

ffiffiffiffiffi
10
p

e�03) 12 4.02e+03
ILU(1e�02) 68 8.48e+03
ILU(0) Fail

None 96.4 832 5.30e+03
Jacobi Fail
Block Jacobi 113 4.94e+03
ILU(1e�03) 16 1.65e+04
ILU(

ffiffiffiffiffi
10
p

e�03) 371 1.78e+05
ILU(1e�02) Fail
ILU(0) Fail

None 928.6 6064 3.80e+04
Jacobi Fail
Block Jacobi 350 1.23e+04
ILU(1e�03) 101 5.62e+04
ILU(

ffiffiffiffiffi
10
p

e�03) Fail
ILU(1e�02) Fail
ILU(0) Fail

1764 A. Kanevsky et al. / Journal of Computational Physics 225 (2007) 1753–1781
interesting to note that the preconditioned MFNK only starts to pay off for stiffness levels greater than
roughly two orders of magnitude. This result may seem counterintuitive since preconditioned Implicit-
RK methods are typically implemented for very large levels of stiffness where the preconditioner increases
efficiency. However, if the stiffness level is low enough, the preconditioner may not increase the efficiency
of the method.



10
1

10
2

10
3

10
2

10
3

10
4

10
5

Stiffness

p=4

No Preconditioner
Block−Jacobi
ILU(1E−03)
ILU(101/2 E−03)

C
P

U
 T

im
e

10
1

10
2

10
3

10
2

10
3

10
4

10
5

Stiffness

C
P

U
 T

im
e

p=8

No Preconditioner
Block−Jacobi
ILU(1E−03)

Fig. 3. 2D preconditioner tests for p = 4 (a) and p = 8 (b), T = 1.

A. Kanevsky et al. / Journal of Computational Physics 225 (2007) 1753–1781 1765
3.3.6. Stability: explicit Runge–Kutta methods

We now analyze the domain of absolute stability (linear stability envelope) for a general ERK scheme. In
order to determine the region of absolute stability, we apply the RK scheme to the scalar test equation
dU

dt
¼ FðUÞ ¼ kU; ð3:12Þ
where k is a complex constant that generally represents an eigenvalue of a matrix. Since Runge–Kutta schemes
are one-step methods, we can write the numerical solution Uðnþ1Þ at time tðnþ1Þ as the product of an amplifica-
tion factor RðzÞ and the numerical solution UðnÞ at time tðnÞ
Uðnþ1Þ ¼ RðzÞUðnÞ;

where the complex number z ¼ kh and h ¼ Dt is the time-step. The region of absolute stability occurs when
jUðnþ1Þj 6 jUðnÞj or when jRðzÞj 6 1.

For an s-stage ERK of order p, the amplification factor RðzÞ is given as [2]
RðzÞ ¼ 1þ zþ z2

2
þ � � � þ zp

p!
þ
Xs

j¼pþ1

zjbTAj�11;
where the vectors 1 ¼ ½1; . . . ; 1�T and b ¼ ½b1; . . . ; bs�T.
We plot the regions of absolute stability for ERK methods with s ¼ p 6 4, which includes the classical

fourth-order, 4-stage method, the 5-stage, fourth-order low-storage 2N ((5,4)-2N ERK) scheme, and the 6-
stage, fourth-order ARK4(3)-ERK scheme in Fig. 4. We note that the s = 6 ARK4(3)-ERK and the s = 5
low-storage (5,4)-2N ERK schemes have the largest stability regions in the left-hand plane. The ARK4(3)-
ERK scheme has the largest extent along the imaginary axis, while the (5,4)-2N ERK scheme has the largest
extent along the real axis. However, we can see that for all of the explicit RK schemes, the values of z ¼ kh
necessary for stability are confined by the envelope regions. For stiff problems, the eigenvalues may become
very large, thus squeezing the maximum allowable time step h to very small values. For this reason, we con-
sider semi-implicit methods, such as the ARK4(3) scheme, which couples an explicit RK scheme to an implicit
RK scheme, and therefore extends the stability region of purely explicit RK methods.

3.3.7. Stability: implicit Runge–Kutta methods

Let us discuss the stability of implicit RK methods. For explicit RK schemes, the amplification function is a
polynomial. However, for implicit RK schemes, the amplification function RðzÞ is not a polynomial, but a
rational function that may be expressed as the quotient of two polynomials (by definition)
RðzÞ ¼ 1þ zbT ðI� zAÞ�1
1 ¼ NðzÞ

DðzÞ ¼
detðIþ zð1bT � AÞÞ

detðI� zAÞ :



–8 –7 –6 –5 –4 –3 –2 –1 0 1 2
–4

–3

–2

–1

0

1

2

3

4

Re(z)

Im
(z

)

ERK1

ERK2

ERK3

ERK4

(5,4) 2N–ERK

ARK4(3)–ERK

Fig. 4. The regions of absolute stability for various ERK schemes.

1766 A. Kanevsky et al. / Journal of Computational Physics 225 (2007) 1753–1781
Let us review a couple of important definitions regarding stability. A numerical method is A-stable if its region
of absolute stability includes the entire left half-plane of z ¼ hk, i.e. jRðzÞj 6 1, for all z s.t. ReðzÞ < 0. A numer-
ical method is L-stable if it is A-stable and Rðz ¼ 1Þ ¼ 0. Also, a scheme that has a nonsingular coefficient
matrix A for which asj ¼ bj; j ¼ 1; . . . ; s, is stiffly-accurate. Note that stiffly accurate methods have stiff decay.
Methods with stiff decay have the property that as the real part of z goes to negative infinity ðReðzÞ ! �1Þ,
the amplification factor tends to 0 ðRðzÞ ! 0Þ.

We note that the ARK-ESDIRK [27] family of schemes are implicit RK methods ranging from third to
fifth-order accurate. The three schemes are designed for the integration of stiff terms jzj ! 1, and have many
desirable properties with respect to stability. They are L-stable and stiffly-accurate with vanishing stability
functions for very large eigenvalues z! �1.

3.3.8. Time-step control

In order to control both accuracy and stability, it is important to choose a time-step controller which is a
function of both criteria. The basic idea behind embedded time-integration schemes is to provide an additional
scheme that is one order lower than the main scheme in order to allow for the computation of the temporal
error. For example, the ARK5(4), ARK4(3) and ARK3(2) [27] schemes are of design orders 5, 4, and 3 respec-
tively with embedded schemes of orders 4, 3, and 2 respectively. The computed temporal error may be fed into
a controller such as an I, PI, or a PID controller, in order to automatically and adaptively control the time step
Dt.

Let us the derive the I-based controller in order to gain a deeper understanding of time-step controller
design in general. In order to compute the temporal error d, we subtract the solution based on the embedded
scheme of order p from the solution based on the main scheme of order p + 1
d ¼ U� bU
¼ ðUexact þOððDtÞpþ1ÞÞ � ðUexact þOððDtÞpÞÞ
¼ OððDtÞpÞ
¼ CðDtÞp;



A. Kanevsky et al. / Journal of Computational Physics 225 (2007) 1753–1781 1767
where C is a constant. Therefore, our computed temporal error is of order p. We now compare the time errors
dðnþ1Þ and dðnÞ for 2 different time steps, ðDtÞðnþ1Þ and ðDtÞðnÞ
dðnþ1Þ

dðnÞ
¼ CððDtÞðnþ1ÞÞp

CððDtÞðnÞÞp

¼ ðDtÞðnþ1Þ

ðDtÞðnÞ

 !p

;

where ðDtÞðnþ1Þ is the time-step we want to determine and dðnþ1Þ is the temporal error that will occur for this
step. Let us specify the time error we want to commit for this step and call it � ¼ dðnþ1Þ. Substituting � for dðnþ1Þ

gives us
�

dðnÞ
¼ ðDtÞðnþ1Þ

ðDtÞðnÞ

 !p

;

and solving for ðDtÞðnþ1Þ
ðDtÞðnþ1Þ ¼ ðDtÞðnÞ �

dðnÞ

� �1
p

:

Finally, we add a factor of safety j
ðDtÞðnþ1Þ ¼ jðDtÞðnÞ �

dðnÞ

� �1
p

ð3:13Þ
Two common controllers are given below (refer to [18,19,39])
ðDtÞðnþ1Þ
I ¼ jðDtÞðnÞ �

kdðnÞk1

 !1
p

;

ðDtÞðnþ1Þ
PID ¼ jðDtÞðnÞ �

kdðnÞk1

 !a
kdðn�1Þk1

�

 !b
�

kdðn�2Þk1

 !c

;

ð3:14Þ
where j � :9 is a factor of safety, � is a specified tolerance for the controlled parameter (e.g. temporal
error, . . .), and p is the order of accuracy of the embedded scheme. d is a measure of temporal error
and is defined as
dðnþ1Þ ¼ Uðnþ1Þ � Ûðnþ1Þ ¼ Dt
Xs

i¼1

biFðUðiÞÞ � Dt
Xs

i¼1

b̂iFðUðiÞÞ ¼ Dt
Xs

i¼1

ðbi � b̂iÞFðUðiÞÞ: ð3:15Þ
We follow [27] and select the PID controller with the following fixed controller gains
kI ¼ 0:25; kP ¼ 0:14; kD ¼ 0:10; xn ¼ 1;
where
pa ¼ kI þ kP þ
2xn

1þ xn

� �
kD

� �
; pb ¼ ½kP þ 2xnkD�;

pc ¼ 2x2
n

1þ xn

� �
kD:

ð3:16Þ



1768 A. Kanevsky et al. / Journal of Computational Physics 225 (2007) 1753–1781
and
xn ¼
ðDtÞðnÞ

ðDtÞðn�1Þ : ð3:17Þ
Therefore,
a ¼ :49

p
; b ¼ :34

p
; c ¼ :10

p
:

We demonstrate the responsiveness and time-step control of the PID-controller for the one-dimensional Bur-
gers equation
ou
ot
þ 1

2

o u2ð Þ
ox
¼ � o

2u
ox2

ð3:18Þ
with a perturbation at the inflow x ¼ �:5 given as
uð�:5; tÞ ¼ �a tanh a
x� ct

2�

	 

þ c

	 

� ð1þ AðsinðftÞÞ4Þ ¼ 1þ :1ðsinð100tÞÞ4;
since a = 1, wave speed c = 0, � = 1e�03, f = 100 and amplitude A ¼ :1. The perturbation is designed to test
the time-controller’s responsiveness. In Fig. 5, the scaled inflow perturbation function (dashed red line) is plot-
ted along with the time-step history (solid black line). We can see that the PID controller responds well to the
oscillations of the inflow perturbation function, thereby having a frequency that appears to match 100/p quite
well. Also, note that the time-step history is a smooth function, indicating the proper behavior for the PID
controller (since the problem is smooth and is spatially resolved).

Finally, the time step Dt is chosen as the minimum of the stability-based time-step and the time-accurate
controller-based time step
Dt ¼ minðDtStable;DtControllerÞ:
0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3
0

0.5

1

1.5
x 10

–4

(Δt)
PID

scaled sin4(100t) perturbation

Time

Fig. 5. PID-control for 1-D Burgers equation with perturbation at inflow.



A. Kanevsky et al. / Journal of Computational Physics 225 (2007) 1753–1781 1769
4. Numerical tests

In this section, we carry out numerical experiments in 1D and 2D. We implement both ERK and IMEX-
RK schemes to solve several test problems, such as nozzle flows modeled by the Euler equations, and compare
the efficiency of the methods. Note that the ERK method used for all 1D test cases is the classical fourth-order
ERK4 scheme, while the ERK method used for the 2D test cases is the low-storage (5,4)-2N ERK scheme. The
IMEX method used is always the ARK4(3) IMEX-RK scheme, unless specified otherwise, and selects time
steps using a PID time step controller (refer to Section 3.3.8).

4.1. Viscous burgers equation

The one-dimensional viscous Burgers equation is the classical one-dimensional analog of the multidimen-
sional viscous Navier–Stokes equations
ou
ot
þ 1

2

o u2ð Þ
ox
¼ � o

2u
ox2

; �1 6 x 6 1; t P 0: ð4:1Þ
We set the initial condition to be a hyperbolic tangent wave so that the exact solution to Eq. (4.1) is a right-
ward traveling hyperbolic tangent wave with velocity equal to c, and initial condition uðx; 0Þ:
uðx; tÞ ¼ �a tanh a
x� ct

2�

	 

þ c; uðx; 0Þ ¼ �a tanh a

x
2�

	 

þ c:
The wave-speed c, and the constant a are:
c ¼ u�1 þ u1
2

; a ¼ u�1� u1
2

:

The numerical solutions to Eq. (4.1) are shown in Fig. 6(b). The grid used is displayed in Fig. 6(a), where the
elements in the blue region are solved using an IMEX-RK method, while the elements in the black region are
solved using the ERK scheme. The results for both � ¼ :01 and � ¼ :001 are shown in Figs. 7(a) and (b) respec-
tively, and are summarized in Table 3. We can see the same type of pattern appear as for the previous two
cases. At a certain critical stiffness level, S�, the IMEX scheme starts to beat the ERK scheme. S� � 6 for
� ¼ :01, and S� � 3 for � ¼ :001.
−1 −0.5 0 0.5 1

0

0.5

1

1.5

2

Eight−domain solution of the traveling wave solution to Burgers equation. 
The dots at the initial wave represent the collocation points in each subdomain. 

U
 (

X
,t)

T = .25

N = 8
epsilon = 0.1

T = .50
T = .75

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Explicit Explicit

Implicit

Fig. 6. The mesh used (a) and the traveling wave solutions (b).



10
1 102

100

101

102

103

104

Stiffness

C
P

U
 T

im
e

ε = .01

p=8, IMEX−RK
p=8, ERK

101 102
100

101

102

103

104

105

Stiffness

C
P

U
 T

im
e

ε = .001

p=8, IMEX−RK
p=8, ERK

Fig. 7. Comparison of IMEX-RK and ERK results for 1D traveling wave solution to Burgers equation for � ¼ :01 (a) and � ¼ :001 (b).

Table 3
ERK and IMEX-RK results for 1D Burgers equation

� Stiffness ðSÞ Avg. Dt (ERK) Avg. Dt (IMEX) Avg. GMRES iter. per Dt CPUERK/CPUIMEX

.01 90.0 5.03e�06 1.98e�03 4 36.96
45.0 1.78e�05 1.98e�03 3 14.72
22.5 5.76e�05 1.98e�03 3 4.00
9.0 2.30e�04 1.98e�03 3 1.50
4.5 5.26e�04 1.98e�03 2 .75
1.8 1.69e�03 1.98e�03 3 .25

.001 90.0 5.71e�07 6.38e�04 3 128.88
45.0 2.25e�06 3.19e�03 6 116.39
22.5 8.74e�06 3.19e�03 6 31.18
9.0 5.03e�05 3.19e�03 5 5.57
4.5 1.78e�04 3.19e�03 5 1.50
1.8 8.23e�04 3.19e�03 4 .25

1770 A. Kanevsky et al. / Journal of Computational Physics 225 (2007) 1753–1781
4.2. Compressible Navier–Stokes equations

We review the compressible, nondimensional Navier–Stokes equations in conservation form, which will be
used to test the RK schemes described in this paper. Consider the three-dimensional Navier–Stokes equations
given in Cartesian coordinates
oq

ot
þr � FðqÞ ¼ 1

Reref

ðr � FmÞ; t > 0: ð4:2Þ
The state vector q and the flux vector F(q) are given as
q ¼

q

qu

qv

qw

E

266666664

377777775; FðqÞ ¼

qu

qu2 þ p

quv

quw

ðE þ pÞu

266666664

377777775îþ

qv

quv

qv2 þ p

qvw

ðE þ pÞv

266666664

377777775ĵþ

qw

quw

qvw

qw2 þ p

ðE þ pÞw

266666664

377777775k̂; ð4:3Þ



A. Kanevsky et al. / Journal of Computational Physics 225 (2007) 1753–1781 1771
where q is density, u, v and w are the Cartesian velocity components, E is the total energy, and p is the pres-
sure. The total energy
E ¼ q T þ 1

2
ðu2 þ v2 þ w2Þ

� �
: ð4:4Þ
The pressure and temperature are related through the ideal gas law
p ¼ ðc� 1ÞqT ; ð4:5Þ

where T is the temperature and c ¼ cp=cv is the ratio between the constant pressure (cp) and constant volume
(cv) heat capacities. c ¼ 1:4 for air. The viscous vector is
Fm ¼

0

sxx

syx

szx

sxxuþ syxvþ szxwþ ck
Pr

oT
ox

266666664

377777775iþ

0

sxy

syy

szy

sxyuþ syyvþ szywþ ck
Pr

oT
oy

266666664

377777775jþ

0

sxz

syz

szz

sxzuþ syzvþ szzwþ ck
Pr

oT
oz

266666664

377777775k̂:

ð4:6Þ
Note that the Cartesian coordinates ðx; y; zÞ ¼ ðx1; x2; x3Þ. We assume that the fluid is Newtonian, for which the
stress tensor is defined as
sxixj ¼ l
oui

oxj
þ ouj

oxi

� �
þ dijk

X3

k¼1

ouk

oxk
;

where l is the dynamic viscosity, k is the coefficient of Bulk viscosity for the fluid, and k is the coefficient of
thermal conductivity. We use Sutherland’s law to relate the dynamic viscosity to the temperature
lðT Þ
ls

¼ T
T s

� �3
2 T s þ S

T þ S
;

where ls ¼ 1:716	 10�5 kg/m s , T s ¼ 273 K, S = 111 K and the Prandtl number Pr ¼ :72 for atmospheric air.
Stokes hypothesis gives us k ¼ �2

3
l.

We normalize Eq. (4.2) using reference values uref ¼ u0, qref ¼ q0, pref ¼ q0u2
0, T ref ¼ u2

0=cv and L as the ref-
erence length. Therefore, the reference Reynolds number Reref ¼ q0u0L

l0
and the Prandtl number Pr ¼ cpl0

k0
.

4.3. Euler equations: two-dimensional nozzle flows

Consider the two-dimensional Euler equations given in conservation form
oq

ot
þr � FðqÞ ¼ 0: ð4:7Þ
The state vector q and the flux vector F(q) are given in Section 4.2 for the three-dimensional Euler equations.
For the two-dimensional Euler equations, the state vector is
q ¼ ½q; qu; qv;E�:

We consider the flow in a two-dimensional duct (rectangular cross-section) or nozzle, modeled using the Euler
equations. We solve the two-dimensional compressible Euler equations using both ERK and IMEX-RK time-
stepping schemes and compare the accuracy and efficiency of both schemes. The converging–diverging nozzle
(Fig. 8) has an area AðxÞ given by
AðxÞ ¼
1:75� :75 cosðð:2x� 1:0ÞpÞ; 0 6 x 6 5;

1:25� :25 cosðð:2x� 1:0ÞpÞ; 5 6 x 6 10:






Fig. 8. The set of five grids used for the nozzle flow tests. Nozzlea (a) has a stiffness �12.6, Nozzleb (b) has a stiffness�21.6, Nozzlec (c) has
a stiffness �53.2, Nozzled (d) has a stiffness �96.4, and Nozzlee (e) has a stiffness �928.6. The shaded blue regions are solved implicitly
when using the IMEX-RK scheme, and explicitly when using the ERK scheme. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

1772 A. Kanevsky et al. / Journal of Computational Physics 225 (2007) 1753–1781
This is a classic one-dimensional steady (steady-state), inviscid compressible flow problem that has an analytic
solution [1] on the centerline at y = 0. The initial condition is a linear profile that connects the exact (analytic)
boundary conditions at x = 0 and x = 10.

4.3.1. Nozzle flow with normal shock
A ratio between the stagnation pressure and the back pressure of .75 (back pressure/stagnation pressure)

results in a choked flow with a stationary normal shock in the divergent part of the nozzle at x ffi 7:5623.
The Mach number M ¼ 1:0 and the stagnation temperature T = 300 K as the flow is choked. The inflow
Mach number M ¼ :240 and the outflow Mach number M ¼ :501. The inflow values of the conserved vari-
ables are ðqi; qui; qvi;EiÞ ¼ ð1:5331e þ 00; 4:0000e� 01; 0; 3:3001eþ 00Þ, while the outflow values are
ðqo; quo; qvo;EoÞ ¼ ð1:2427eþ 00; 6:6668e� 01; 0; 2:7141eþ 00Þ. A sample numerical solution for the Mach
number and pressure contours at time T = 40 is shown in Fig. 9 (for p = 4). We compare ERK and IMEX
results at final time T = 1, since the flow is still smooth in this regime. The shock begins to develop roughly
at T = 20, after which the PID controller (based on L1 norm) drives the time steps to very small values



X

0

2

4

6

8

10

Y 0
0.5

1

M

0.5

1

1.5

XY

Z

Mach

X

0

2

4

6

8

10

Y 0
0.5

1

P

0

0.5

1

XY

Z

P

Fig. 9. Nozzle flow with shock: left plot is Mach contour, right is pressure.

X

0

2

4

6

8

10

Y 0
0.5

1

M

0.5

1

1.5

XY

Z

Mach

X

0

2

4

6

8

10

Y 0
0.5

1

P

0.5

1

XY

Z

P

Fig. 10. Supersonic nozzle flow: left plot is Mach contour, right is pressure.

Table 4
ERK and IMEX-RK Results, Nozzle flow with shock, T = 1

Stiffness ðSÞ p Avg. Dt (ERK) Avg. Dt (IMEX) Avg. GMRES Iter. per Dt CPUERK/CPUIMEX

12.6 4 1.66e�03 2.00e�02 56 .97
6 8.87e�04 1.06e�02 46 .78
8 4.99e�04 7.04e�03 43 .62

96.4 4 2.16e�04 2.00e�02 158 2.99
6 1.16e�04 1.06e�02 126 2.21
8 6.50e�05 7.04e�03 113 1.99

928.6 4 2.25e�05 2.00e�02 454 11.96
6 1.20e�05 1.06e�02 391 8.51
8 6.75e�06 7.04e�03 350 7.67

A. Kanevsky et al. / Journal of Computational Physics 225 (2007) 1753–1781 1773
(about the same as for ERK), and the computational advantage of the IMEX scheme disappears. We per-
form the nozzle tests on a set of five different grids illustrated in Fig. 8: Nozzlea has a stiffness S � 12:6,
Nozzleb has a stiffness S � 21:6, Nozzlec has a stiffness S � 53:2, Nozzled has a stiffness S � 96:4, and



101 102 103
102

103

104

105
2D Nozzle Flow, T=1

Stiffness Stiffness

C
P

U
 T

im
e

C
P

U
 T

im
e

p=4, ERK
p=4, IMEX−RK
p=6, ERK
p=6, IMEX−RK
p=8, ERK
p=8, IMEX−RK

p=4, ERK
p=4, IMEX−RK
p=6, ERK
p=6, IMEX−RK
p=8, ERK
p=8, IMEX−RK

101 102 103
102

103

104

105

106
2D Nozzle Flow, T=1

 

 
 
 
 

p=4, ERK
p=4, IMEX−RK
p=6, ERK
p=6, IMEX−RK
p=8, ERK
p=8, IMEX−RK

Fig. 11. 2D nozzle flow with shock (a) and supersonic (b) CPU time vs. stiffness ðSÞ, T = 1.

0 5 10 15 20 25 30 35 40
10

−5

10
−4

10
−3

10
−2

10
−1

Time

Δ
t

p=4,ERK
p=4,IMEX−RK

0 5 10 15 20 25 30 35 40
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

Time

R
es

id
ua

l i
n 

L
2

(ρ
)

p=4,ERK
p=4,IMEX−RK

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 104

Time

C
P

U
 T

im
e

p=4, IMEX–RK
p=4, ERK

Fig. 12. Comparison of time-step histories (a), density residuals (L2, b) and CPU time versus physical time (c).

1774 A. Kanevsky et al. / Journal of Computational Physics 225 (2007) 1753–1781
Nozzlee has a stiffness S � 928:6. All of the grids have roughly the same number of elements (56–72) in the
implicit set, X½im�, so that we can measure the effects of changing stiffness with roughly the same system sizes
(for constant order p). Furthermore, the grids are clustered near the location of the shock ðx ffi 7:56Þ on the
centerline (y = 0), which is the axis along which we compare the numerical solution to the one-dimensional
analytic solution (away from the walls).



The ERK and IMEX-RK results are summarized in Table 4, and are plotted in Fig. 11(a) for polynomials
of degree p ¼ 4, 6, 8. The IMEX method becomes more efficient than the ERK method at roughly a stiffness
level of S ¼ 10 for the p = 4 case, while it does so at roughly a stiffness of S ¼ 20 for p = 8.

Fig. 12 compares the time-step histories (a), the L2 norm residuals of q (b) defined as
residualðt þ DtÞ ¼ kqðt þ DtÞ � qðtÞk2

kqðtÞk2
;

and the CPU time versus the physical time (c) for the ERK and the IMEX-RK schemes for Nozzlec which
has a stiffness level of approximately 22. We can see that before the shock develops ðt < 10Þ, the ratio of
the IMEX time-steps to that of the ERK time-steps is roughly equal to the stiffness level. From the point
when the shock begins to develop, the PID-controller takes charge and reduces the magnitude of the IMEX
time-steps. This translates into a loss of computational efficiency as far as the IMEX results are concerned,
since the original time-step ratio �22 shrinks to levels of Oð1Þ. The effect of this can be seen in Fig. 12(c),
where we plot CPU time versus physical time. Initially, the slope of CPU to physical time is lower for the
IMEX scheme, but starts to catch up after the shock develops. We can see that both methods result in a
decrease of the residual with time, although the ERK residual decreases more smoothly due to the smaller
time-steps.

Finally, we plot the number of Newton and Krylov iterations versus time in Fig. 13(a), and the temporal
error (based on q) vs. time based on the embedded scheme in Fig. 13(b).
4.3.2. Supersonic nozzle flow
A ratio between the stagnation pressure and the back pressure of .16 (back pressure/stagnation pressure)

results in supersonic nozzle flow (no normal shock).
The inflow values of the conserved variables are ðqi; qui; qvi;EiÞ ¼ ð1:5331eþ 00; 4:0000e � 01; 0;

3:3001eþ 00Þ, while the outflow values are ðqo; quo; qvo;EoÞ ¼ ð4:2639e� 01; 6:6667e� 01; 0; 1:0626eþ 00Þ.
A sample numerical solution for the Mach number and pressure contours at time T = 40 is shown in
Fig. 10 (for p = 4).

The ERK and IMEX-RK results are summarized in Table 5, respectively, and are plotted in Fig. 11(b) for
polynomials of degree p ¼ 4,6,8. The results are quite similar to those of the normal shock case and will not be
discussed further.
0 5 10 15 20 25 30 35 40
10

0

10
1

10
2

10
3



Table 5
ERK and IMEX-RK results, supersonic nozzle flow, T = 1

Stiffness ðSÞ p Avg. Dt (ERK) Avg. Dt (IMEX) Avg. GMRES iter. per Dt CPUERK/CPUIMEX

12.6 4 1.19e�03 1.33e�02 59 1.00
6 6.33e�04 7.14e�03 49 .62
8 3.56e�04 4.69e�03 45 .60

96.4 4 1.55e�04 1.33e�02 177 2.70
6 8.25e�05 7.14e�03 147 1.68
8 4.64e�05 4.69e�03 137 1.61

928.6 4 1.61e�05 1.33e�02 510 10.52
6 8.56e�06 7.14e�03 447 7.12
8 4.82e�06 4.69e�03 415 6.40

1776 A. Kanevsky et al. / Journal of Computational Physics 225 (2007) 1753–1781
4.3.3. Navier–Stokes equations: cylinder flow

Consider the two-dimensional Navier–Stokes equations given in conservation form
Fig. 14
explici
version
oq

ot
þr � FðqÞ ¼ 1

Reref

ðr � FmÞ: ð4:8Þ
The state vector q and the flux vector FðqÞ are given in Section 4.2 for the three-dimensional Navier–Stokes
equations. For the two-dimensional Navier–Stokes equations, the state vector is
q ¼ ½q;qu; qv;E�:

Two-dimensional flow around a cylinder predicted by the 2D NS equations has good agreement with exper-
imental results up to Reynolds numbers of roughly Re = 180. For Re > 180, three-dimensional effects take
place, and numerical results can no longer be validated against experimental results. We perform calculations
at Re = 75, +100 and +125, and compare the Strouhal numbers for these flows versus experimental data by
Williamson [41] and numerical results by Hesthaven [20]. The Strouhal number is the nondimensional shed-
ding frequency and is defined as St ¼ xL=u0.

We run the tests with polynomials of degree p = 4 until time T = 100–150, by which periodic vortex shed-
ding is well established. The computational domain is a disk with radius equal to approximately 20 cylinder
diameters. The mesh used is shown in Fig. 14. The unshaded white elements are solved explicitly in time, while
the two rows of elements in the shaded blue region are solved implicitly. The ratio of number of elements in the
implicit region to those in the explicit region is 128/1408.
. The mesh used for the cylinder flow tests. The shaded blue region is solved implicitly when using the IMEX-RK scheme, and
tly when using the ERK scheme. (For interpretation of the references to color in this figure legend, the reader is referred to the web

of this article.)



StreamlinesFig. 15. The (a) density, (b) pressure, (c) vorticity, and (d) Mach number con

= 100 and timeT= 100 (p= 4). (e) Shows the velocity streamlines for this ”o

A. Kanevsky et al. / Journal of Computational Physics 225 (2007) 1753…17811777
We plot contours of density, pressure, vorticity and Mach number for Re = 100 in Fig. 15(a)–(d), and the
velocity streamlines in Fig. 15(e). Table 6 compares the Strouhal numbers computed numerically using the
IMEX scheme to those from Williamson’s experimental results and Hesthaven’s computations, and the com-
parison is very good. It is important to note that we use the sharp-cutoff filter with N c ¼ N � 1 for this test,
Table 6
Strouhal numbers from experiment and computations at Re = 100

Re St computed St computed [20] St experiment [41]

75 .151 .149 .149
100 .166 .165 .164
125 .177 .177 .175

Density Pressure

Vorticity Mach

tour plots for the IMEX-RK simulation of cylinder vortexshedding atRe

w.



1778 A. Kanevsky et al. / Journal of Computational Physics 225 (2007) 1753–1781
BiCGSTAB Krylov solver without preconditioning. Also, the stiffness S � 3, and the CPU time for the IMEX
is roughly the same as that for an ERK scheme.
5. Conclusions

In this paper, we introduced, discussed, tested and compared explicit (ERK) and implicit–explicit
(IMEX-RK) Runge–Kutta time integration schemes. The main motivation for considering implicit RK
methods is geometry-induced stiffness, which is a result of computing on grids that are composed of ele-
ments having drastically varying length scales. Geometry-induced stiffness leads to severe time-step restric-
tions in the context of ERK schemes, which have been the most popular vehicles for time-integration up to
the present day.

Fig. 4 shows the regions of absolute stability for various explicit methods. The complex product
z ¼ kh ¼ kDt must lie within this region for each respective ERK scheme to guarantee stability (amplification
factor is bounded by 1). However, for problems for which the eigenvalues are driven towards infinity due to
the presence of geometry-induced or physics/operator-induced stiffness, the maximum stable time-step DtST is
driven towards zero. This stability-based time step restriction is the Achilles heel of ERK methods in general.
Explicit Runge–Kutta methods are at the mercy of the ‘‘smallest’’ element in the mesh. Explicit methods that
allow integrating elements with variable local time-steps (depending on the size of each element), such as local
timestepping or multi-rate methods [33], have been developoed, but are typically second-order accurate and
suffer difficulties contending with irregular unstructured meshes.

Our approach for overcoming geometry-induced stiffness is to apply IMEX-RK schemes based on [27].
We divide a given mesh into two main sets or regions: the first containing the ‘‘explicit’’ elements which
we integrate in time using an ERK scheme, and the second containing the ‘‘implicit’’ elements which are
integrated in time with an implicit SDIRK scheme. The sets are divided in such a way so that the explicit
set contains the ‘‘largest’’ elements (based on length in 1D, chord of triangle or other measure of length in
2D), while the implicit set contains the ‘‘smallest’’ elements which are responsible for constraining the
maximum stable time step in purely ERK schemes. Thus, we alleviate the time-step restriction (to a
degree) by integrating the small elements using an implicit scheme. With IMEX methods the problem
of contending with irregular unstructured meshes that may have a combination of very small and highly
distorted anisotropic elements is transferred over to that of building an adequate preconditioner for these
strange cells.

All of the numerical test case results lead to a similar conclusion with regard to IMEX schemes. IMEX-
RK schemes become more efficient than ERK schemes at a certain level of stiffness, even without the use of
preconditioning. However, the application of efficient preconditioners in conjunction with IMEX MFNK
schemes is critical to increasing the robustness and efficiency of IMEX methods, leading to even greater
gains in computational efficiency for IMEX versus ERK methods. As the stiffness level S increases, efficient
preconditioning becomes more important to speed-up the MFNK method. Effective preconditioning will
decrease the CPU time versus stiffness slope. Also, out tests indicate that as stiffness levels increase, the pre-
conditioned GMRES method becomes the Krylov method of choice (as compared to preconditioned BiCG-
STAB), since it involves only one matrix–vector product per Krylov iteration versus BiCGSTAB’s two.
Adaptive controller-based time-stepping is very important in conjunction with IMEX schemes to control
temporal errors. However, we found that L1-based time-step controllers are not suitable for problems with
shocks.
Acknowledgments

A.K. was supported by the NASA Graduate Student Researchers Program (GSRP) Fellowship NGT-1-
01024 and by the NSF VIGRE Program, M.H.C. was partially funded under NASA fellowship
23847923847, D.G. was supported by DOE Award DE-FG02-98ER25346 and by AFOSR Award FA9550-
05-1-0123, and J.S.H. was partly supported by NSF Career Award DMS-0132967 and by the Alfred P. Sloan
Foundation through a Sloan Research Fellowship.



A. Kanevsky et al. / Journal of Computational Physics 225 (2007) 1753–178117
Appendix A

The fourth-order ARK4(3) scheme.
Table A.1
The fourth-order ARK4(3) scheme consists of two coupled RK schemes: a six-stage, fourth-order ERK scheme (top) and a six-stage
fourth-order explicit singly diagonally implicit Runge–Kutta (ESDIRK) scheme (bottom)

79



1780 A. Kanevsky et al. / Journal of Computational Physics 225 (2007) 1753–1781
References

[1] J.D. Anderson, Modern Compressible Flow, McGraw-Hill, New York, 2002.
[2] U.M. Ascher, L.R. Petzold, Computer Methods for Ordinary Differential Equations and Differential–Algebraic Equations, SIAM,

1998.
[3] U.M. Ascher, S.J. Ruuth, R.J. Spiteri, Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations, Appl.

Numer. Math. 25 (1997) 151–167.
[4] U.M. Ascher, S.J. Ruuth, B.T.R. Wetton, Implicit–explicit methods for time-dependent partial differential equations, SIAM J.

Numer. Anal. 32 (1995) 797–823.
[5] M.J. Berger, J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys. 53 (1984) 484512.
[6] F. Bassi, S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–

Stokes equations, J. Comput. Phys. 131 (1997) 267–279.
[7] J.C. Butcher, Numerical Methods for Ordinary Differential Equations, second ed., Wiley, Chichester, England, 2003.
[8] M.P. Calvo, J. de Frutos, J. Novo, Linearly implicit Runge–Kutta methods for advection–reaction–diffusion equations, Appl. Numer.

Math. 37 (4) (2001) 535–549.
[9] M.H. Carpenter, C.A. Kennedy, Fourth-Order 2N-Storage Runge–Kutta Schemes, NASA-TM-109112, 1994, pp. 1–24.

[10] B. Cockburn, Discontinuous Galerkin methods for convection-dominated problems, in: T.J. Barth, H. Deconinck (Eds.), High-Order
Methods for Computational Physics, Lecture Notes in Computational Science and Engineering, vol. 9, Springer, Berlin, 1999, pp. 69–
224.

[11] B. Cockburn, G.E. Karniadakis, C.-W. Shu (Eds.), Discontinuous Galerkin Methods: Theory, Computation and Applications,
Lecture Notes in Computational Science and Engineering, vol. 11, Springer, 2000, Computing 16 (2001) 173–261.

[12] C.N. Dawson, R. Kirby, High resolution schemes for conservation laws with locally varying time steps, SIAM J. Sci. Comput. 22
(2001) 22562281.

[13] T.A. Driscoll, A composite Runge–Kutta method for the spectral solution of semilinear PDE, 2001, unpublished.
[14] M. Dubiner, Spectral methods on triangles and other domains, J. Sci. Comput. 6 (1991) 345–390.
[15] J.E. Flaherty, R.M. Loy, M.S. Shephard, B.K. Szymanski, J.D. Teresco, L.H. Ziantz, Adaptive local refinement with octree local-

balancing for the parallel solution of three-dimensional conservation laws, J. Parallel Distributed Comput. 47 (1997) 139152.
[16] P. Fritzen, J. Wittekindt, Numerical solution of viscoplastic constitutive equations with internal state variables, Part I: Algorithms

and implementation, Math. Meth. Appl. Sci. 20 (16) (1997) 1411–1425.
[17] D. Gottlieb, J.S. Hesthaven, Spectral methods for hyperbolic problems, J. Comput. Appl. Math. 128 (2001) 83–131.
[18] K. Gustafsson, Control theoretic techniques for stepsize selection in Runge–Kutta methods, ACM Trans. Math. Soft. 17 (4) (1991)

533–554.
[19] K. Gustafsson, Control theoretic techniques for stepsize selection in implicit Runge–Kutta methods, ACM Trans. Math. Soft. 20 (4)

(1994) 496–517.
[20] J.S. Hesthaven, A stable penalty method for the compressible Navier–Stokes equations: II. One-dimensional domain decomposition

schemes, SIAM J. Sci. Comput. 18 (3) (1997) 658–685.
[21] J.S. Hesthaven, From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex, SIAM J. Numer. Anal. 35

(2) (1998) 655–676.
[22] J.S. Hesthaven, T. Warburton, Nodal high-order methods on unstructured grids I: Time-domain solution of Maxwell’s equations, J.

Comput. Phys. 181 (2002) 186–221.
[23] J.S. Hesthaven, T. Warburton, Discontinuous Galerkin methods for the time-domain Maxwell’s equations: An introduction, ACES

Newsletter 19 (2004) 12–30.
[24] A. Kanevsky, High-order implicit–explicit Runge–Kutta time integration schemes and time-consistent filtering in spectral Methods,

Ph.D. Thesis, Brown University, 2006, pp. 1–138.
[25] A. Kanevsky, M.H. Carpenter, J.S. Hesthaven, Idempotent filtering in spectral and spectral element methods, J. Comput. Phys. 220

(1) (2006) 41–58.
[26] C.T. Kelley, Solving Nonlinear Equations with Newton’s Method, SIAM, Philadelphia, 2003.
[27] C.A. Kennedy, M.H. Carpenter, Additive Runge–Kutta schemes for convection–diffusion–reaction equations, Appl. Numer. Math.

44 (2003) 139–181.
[28] D.A. Knoll, D.E. Keyes, Jacobian-free Newton–Krylov methods: a survey of approaches and applications, J. Comput. Phys. 193

(2004) 357–397.
[29] D.A. Knoll, P.R. McHugh, Enhanced nonlinear iterative techniques applied to a nonequilibrium plasma flow, SIAM J. Sci. Comput.

19 (1998) 291–301.
[30] T. Koornwinder, Two-variable analogues of the classical orthogonal polynomials, in: R.A. Askey (Ed.), Theory and Application of

Special Functions, Academic Press, New York, 1975, pp. 435–495.
[31] R.J. LeVeque, Numerical Methods for Conservation Laws, Birkhauser Verlag, Basel, 1990.
[32] R.J. LeVeque, Finite-Volume Methods for Hyperbolic Problems, Cambridge University Press, 2002.
[33] S. Osher, R. Sanders, Numerical approximations to nonlinear conservation laws with locally varying time and space grids, Math.

Comp. 41 (1983) 321336.
[34] A.T. Patera, A. Spectral, Element method for fluid dynamics: laminar flow in a channel expansion, J. Comput. Phys. 54 (1984) 468–

488.



A. Kanevsky et al. / Journal of Computational Physics 225 (2007) 1753–1781 1781
[35] S. Piperno, Symplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation problems, ESAIM:M2AN
40 (2006) 815–841.

[36] J. Proriol, Sur une famille de polynomes deux variables orthogonaux dans un triangle, C. R. Acad. Sci. Paris 257 (1957) 2459–2461.
[37] W.H. Reed, T.R. Hill, Triangular mesh methods for the neutron transport equation, Los Alamos Scientific Laboratory Report LA-

UR-73-479, 1973.
[38] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Co., 1996.
[39] G. Soderlind, Automatic control and adaptive time-stepping, Numerical methods for ordinary differential equations (Auckland,

2001), Numer. Algorithms 31 (1–4) (2002) 281–310.
[40] Z. Tan, Z. Zhang, Y. Huang, Tao Tang, Moving mesh methods with locally varying time steps, J. Comput. Phys. 200 (2004) 347–367.
[41] C.H.K. Williamson, Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers, J.

Fluid Mech. 206 (1989) 579–627.
[42] J.H. Williamson, Low-storage Runge–Kutta schemes, J. Comput. Phys. 35 (1980) 48.
[43] J.J.-I. Yoh, X. Zhong, Semi-implicit Runge–Kutta schemes for stiff multi-dimensional reacting flows, AIAA Paper 97-0803, AIAA,

Aerospace Sciences Meeting and Exhibit, 35th, Reno, NV, January 6–9, 1997.
[44] X. Zhong, New high-order semi-implicit Runge–Kutta schemes for computing transient nonequilibrium hypersonic flows, AIAA

Paper 95-2007, AIAA, Thermophysics Conference, 30th, San Diego, CA, June 19–22, 1995.


	Application of implicit-explicit high order Runge-Kutta methods to discontinuous-Galerkin schemes
	Introduction
	Spatial discretization
	Two-dimensional scheme

	Time integration schemes
	Explicit Runge-Kutta (ERK) methods
	Geometry-induced stiffness
	Implicit-explicit Runge-Kutta (IMEX-RK) methods
	Newton-Krylov methods: Newton methods (outer iteration)
	MFNK method
	Krylov methods: inner iteration
	Newton-Krylov termination criteria
	Preconditioning
	Stability: explicit Runge-Kutta methods
	Stability: implicit Runge-Kutta methods
	Time-step control


	Numerical tests
	Viscous burgers equation
	Compressible Navier-Stokes equations
	Euler equations: two-dimensional nozzle flows
	Nozzle flow with normal shock
	Supersonic nozzle flow
	Navier-Stokes equations: cylinder flow


	Conclusions
	Acknowledgments
	Appendix A
	References


